[bookmark: _GoBack]Help for the week 1 assignment – comments in bold show code from the lecture

// lab1: simplegame_OOP
// <insert your name here>
// read main.cpp, and follow the instructions at the bottom of main.cpp

#include <iostream>		// std::cout
using namespace std;
#include <windows.h>	// SetConsoleCursorPosition(HANDLE,COORD)
#include <conio.h>		// _getch()

/**
 * moves the console cursor to the given x/y coordinate
 * @param x
 * @param y
 */
void moveCursor(int x, int y)
{
	COORD c = {x,y};
	SetConsoleCursorPosition(GetStdHandle(STD_OUTPUT_HANDLE), c);
}

int main()
{
	// player data
	int x = 3, y = 4;
	char icon = 1;

	// game state constants
	const int RUNNING = 1, WIN = 2, LOST = 3, USER_QUIT = -1;

	// game data
	int width = 20, height = 15, input, state = RUNNING;
	do
	{
		// draw the game world
		moveCursor(0,0);
		for(int row = 0; row < height; row++)
		{
			for(int col = 0; col < width; col++)
			{
				cout << '.';
			}
			cout << '\n';
		}
		// draw the player
		moveCursor(x, y);
		cout << icon;

		// get input from the user (wait for one key press)
		input = _getch();

		// process input from the user
		switch(input)
		{
		case 'w':	y--;	break;	// move up
		case 'a':	x--;	break;	// move left
		case 's':	y++;	break;	// move down
		case 'd':	x++;	break;	// move right
		case 27:	state = USER_QUIT;	break;	// quit
		}
		// show the game state message
		moveCursor(0, height+1);
		switch(state)
		{
		case WIN:	cout << "You WON! Congratulations!\n";	break;
		case LOST:	cout << "You lost...\n";				break;
		}
	}
	while(state == RUNNING);

	// user must press ESCAPE before closing the program
	cout << "press ESCAPE to quit\n";
	while(_getch() != 27);
	return 0;
}

// INSTRUCTIONS
// ------------
// Compile this code. You should see a happy-face character on a field of
// periods. You can move the character with the 'w', 'a', 's', and 'd' keys.
//
// Read through this code! Try to understand it before starting the assignment.
// Comment confusing lines with what you think code is doing, and experiment
// with existing code to test your understanding.
// Once you feel comfortable with this code, accomplish each of the following,
// and make sure your code compiles and runs after each step is completed.
//

// 1) Object Oriented Refactoring
// a) Write a class called Entity to store two public integers named x and y,
// and a char named icon (the player data).

Notice the code under "Basic Object-Oriented Programming Syntax". The only differences between that code and this assignment are the class name and the additional char.

// b) Remove x, y, and icon (the player data) from main(), create an instance
// of the Entity class (named whatever you like) in main(), and use its
// members as replacements for the x, y, and icon variables that were
// removed.

Notice the code in the lecture a little further down in the lecture:

int main()
{
	TwoDimensionalLocation loc; // instantiate loc object
	loc.x = 1; // access members
	loc.y = 15;

Something like that is needed for 1b.

// c) Write a parameterized constructor for the Entity class that sets x, y,
// and icon, and use it when creating the instance.

This is shown under Constructors and Destructors:

	BaseballGame (int h, int r) // constructor - two args

The following code from the lecture shows how to set a parameterized constructor:

#include <iostream>
using namespace std;
int main()
{
	BaseballGame bball(3, 1); // creates with parameterized constructor
	BaseballGame newgame; // creates with default constructor

// d) Make x, y, and icon private variables of Entity, and create Accessor
// and Mutator (or Getter and Setter) functions to use them in main().
// (hint: "player.x++" could be "player.setX(player.getX()+1);")

Notice the following code example in the lecture:
class Square {
private:
	int side;
public:
	void set_side(const int length) { side = length; } // mutator
	Square(const int side);
	int get_side() const { return side; } // accessor
	int calc_area() const; // accessor
};

// e) Write a struct called Vector2, which has two int variables, x and y.

The following is located under “Composition” in the lecture:
struct Vector2 // simple 2 dimensional vector struct
{
	int x, y;
	Vector2(){}// empty default constructor
	Vector2(int a_x, int a_y){ x = a_x; y = a_y; }
};

// f) Write a default constructor for Vector2, which sets x and y to 0.

This is found a little further down in the lecture:
#include <stdio.h>
struct Vector2 // simple 2 dimensional vector struct
{
	int x, y;
	Vector2():x(0),y(0){} // default constructor + initialization list
	Vector2(int x, int y):x(x),y(y){} // initialization list
};

// g) Write a parameterized constructor for Vector2, which sets x and y.

struct Vector2 // simple 2 dimensional vector struct
{
	int x, y;
	Vector2():x(0),y(0){} // default constructor + initialization list
	Vector2(int x, int y):x(x),y(y){} // initialization list
};

Same code shows what is needed for this step

// h) Remove x, and y from Entity, add an instance of the Vector2 structure
// named "pos" to the Entity class, and use pos's members as replacements
// for the x, and y variables that were removed.

#include <iostream>

enum math_operation {ADD, SUBTRACT, MULTIPLY, DIVIDE};

class math_problem
{
	float a, b;
	math_operation operation;
public:
	math_problem(float num1, float num2, math_operation op)
	{
		a = num1; b = num2; operation = op;
	}

Notice this code under Enum. We have an enum struct that is declared as an instance within the math_problem class.

Then in main(), notice how this is used:
int main()
{
	math_problem m(5, 3.1416, MULTIPLY);
	std::cout << m.caclulateResult() << std::endl; // 15.708

Something similar is needed in replacing x and y with the vector struct in Entity

Also notice how it is done here:	
class Rect // rectangle struct
{
	Vector2 m_min, m_max; // upper-left and lower-right corners
	char fillLetter;

// i) Remove height and width (in the game data) from main(), create an
// instance of the Vector2 structure named "size", and use size's x member
// as a replacement for width, and size's y member as a replacement for
// height.

Very similar to this, except calling it size instead of v2:

int main()
{
	Rect rect(3, 4, 10, 8, '@');
	Vector2 v2(5, 7);

// j) Write a method in Vector2 with the signature
// "bool is(int a_x, int a_y)". "is" should return true if a_x is equal to
// that instance's x, and a_y is equal that instance's y.

This code in the lecture shows something similar within the rect() class:

#include <stdio.h>
struct Vector2 // simple 2 dimensional vector struct
{
	int x, y;
	Vector2():x(0),y(0){} // default constructor + initialization list
	Vector2(int x, int y):x(x),y(y){} // initialization list
};
class Rect // rectangle struct
{
	Vector2 m_min, m_max; // upper-left and lower-right corners
	char fillLetter;
public:
	Rect(int minx, int miny, int maxx, int maxy, char letter)
		// initialization list
		:m_min(minx, miny), m_max(maxx, maxy), fillLetter(letter)
	{
		// empty body, though code in here would be OK.
	}
	bool contains(Vector2 v)
	{
		return v.x >= m_min.x && v.x < m_max.x
		 && v.y >= m_min.y && v.x < m_max.y;
	}
};

// k) Instantiate a new object of class Vector2 called "winPosition", and set
// it's x, y value to size.x/2, size.y/2.

// 2) Add Game Logic
// a) Add code to the while-loop so that when the player reaches
// "winPosition", which should be determined by using the "is" method, the
// "state" variable should be set to WIN, ending the game.

// b) Add code to the while-loop so that the state variable is set to to LOST
// if the player leaves the play field (ending the game).

// 3) Using enums
// a) Create an enum called "GameState" with the possible values "RUNNING",
// "WIN", "LOST", and "USER_QUIT".
// b) Replace the state variable with an isntance of the GameState enum.

